Skip to content

EXIF Reader API Reference

The exif_reader module provides functionality for extracting EXIF data from image files, focusing on GPS information.

ExifReader Class

class ExifReader:
    """Class for reading EXIF data from image files, focusing on GPS information."""

This class is responsible for extracting GPS data from image files using multiple methods to ensure maximum compatibility with different image formats.

Key Features

  • Supports a wide range of image formats including JPEG, TIFF, and RAW
  • Extracts GPS coordinates, altitude, and timestamps
  • Uses a fallback mechanism when primary extraction methods fail
  • Handles error cases gracefully
  • Provides detailed error information in verbose mode

Method Reference

extract_gps_data(image_path)

Extracts GPS data from an image file.

@staticmethod
def extract_gps_data(image_path):
    """
    Extract GPS data from an image file.

    Args:
        image_path: Path to the image file

    Returns:
        Dictionary containing GPS information (latitude, longitude, altitude, timestamp)
        or None if no GPS data is found
    """

Parameters

  • image_path (str): Path to the image file

Returns

  • dict or None: Dictionary containing GPS information or None if no GPS data is found

Return Dictionary Structure

{
    "latitude": float,     # Latitude in decimal degrees
    "longitude": float,    # Longitude in decimal degrees
    "altitude": float,     # Altitude in meters (optional)
    "timestamp": datetime, # Timestamp from photo (optional)
    "name": str            # Filename or identifier
}

Example Usage

from pixtrail.exif_reader import ExifReader

# Extract GPS data from a single image
gps_data = ExifReader.extract_gps_data("/path/to/image.jpg")

if gps_data:
    print(f"Latitude: {gps_data['latitude']}")
    print(f"Longitude: {gps_data['longitude']}")
    if 'altitude' in gps_data:
        print(f"Altitude: {gps_data['altitude']} meters")
    if 'timestamp' in gps_data:
        print(f"Timestamp: {gps_data['timestamp']}")
else:
    print("No GPS data found in the image")

_extract_gps_with_pillow(image_path)

Extracts GPS data using Pillow as a fallback method.

@staticmethod
def _extract_gps_with_pillow(image_path):
    """
    Extract GPS data using Pillow as a fallback method.

    Args:
        image_path: Path to the image file

    Returns:
        Dictionary containing GPS information or None if no GPS data is found
    """

This is an internal method that serves as a fallback when the primary extraction method fails. While not typically called directly, it's documented here for cases where specific Pillow-based extraction is needed.

_convert_to_degrees(value)

Converts GPS coordinates from degrees, minutes, seconds format to decimal degrees.

@staticmethod
def _convert_to_degrees(value):
    """
    Convert GPS coordinates from degrees, minutes, seconds format to decimal degrees.

    Args:
        value: Tuple of (degrees, minutes, seconds)

    Returns:
        Decimal degrees as a float
    """

This utility method is used internally during GPS data extraction but may be useful for custom processing of raw GPS data.

How the ExifReader Works

The ExifReader uses a multi-strategy approach to extract GPS data:

  1. Primary Extraction - Tries the exifread library first, which provides detailed and accurate EXIF information from most image formats
  2. Fallback Extraction - If the primary method fails, falls back to Pillow (PIL) for basic EXIF data extraction
  3. Error Handling - Catches exceptions from both methods and returns None if all extraction attempts fail
  4. Data Normalization - Standardizes the extracted data into a consistent format regardless of the extraction method used

Extraction Process Flow

+-------------------+
| Image File Input  |
+-------------------+
         |
         v
+-------------------+
| Try exifread      | --> Success --> Extract GPS Data
+-------------------+                      |
         |                                 v
         | Fail                    +-------------------+
         v                         | Convert to        |
+-------------------+              | Standard Format   |
| Try Pillow        | --> Success --> and Return      |
+-------------------+                      |
         |                                 v
         | Fail                    +-------------------+
         v                         | Return GPS Data   |
+-------------------+              | Dictionary        |
| Return None       |              +-------------------+
+-------------------+

Supported Image Formats

The ExifReader is designed to work with a wide range of image formats:

  • JPEG/JFIF - Full support through both extraction methods
  • TIFF - Good support through both extraction methods
  • RAW Formats - Support varies by format:
  • Canon CR2: Good support via exifread
  • Nikon NEF: Good support via exifread
  • Sony ARW: Good support via exifread
  • DNG: Good support via exifread
  • Others: Support depends on exifread's capabilities
  • PNG - Limited EXIF support, as PNG typically doesn't contain much EXIF data
  • BMP - No EXIF support (will always return None)

Example Applications

Batch Processing Multiple Images

from pixtrail.exif_reader import ExifReader
import os
import csv

def extract_gps_to_csv(directory, output_csv):
    """Extract GPS data from all images in a directory and write to CSV."""
    results = []

    for filename in os.listdir(directory):
        if filename.lower().endswith(('.jpg', '.jpeg', '.tiff', '.png', '.nef', '.cr2', '.arw')):
            filepath = os.path.join(directory, filename)
            gps_data = ExifReader.extract_gps_data(filepath)

            if gps_data:
                results.append({
                    'filename': filename,
                    'latitude': gps_data['latitude'],
                    'longitude': gps_data['longitude'],
                    'altitude': gps_data.get('altitude', ''),
                    'timestamp': gps_data.get('timestamp', '')
                })

    # Write results to CSV
    with open(output_csv, 'w', newline='') as csvfile:
        fieldnames = ['filename', 'latitude', 'longitude', 'altitude', 'timestamp']
        writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
        writer.writeheader()
        for data in results:
            writer.writerow(data)

    return len(results)

# Usage
count = extract_gps_to_csv('/path/to/photos', 'gps_data.csv')
print(f"Extracted GPS data from {count} images")

Creating a Custom Extraction Function

from pixtrail.exif_reader import ExifReader
from datetime import datetime

def extract_with_custom_handling(image_path):
    """Extract GPS data with custom error handling and default values."""
    try:
        gps_data = ExifReader.extract_gps_data(image_path)

        if gps_data:
            # Add default altitude if missing
            if 'altitude' not in gps_data:
                gps_data['altitude'] = 0.0

            # Add custom fields
            gps_data['source'] = 'photo'
            gps_data['processed_at'] = datetime.now()

            # Add photo quality rating based on GPS accuracy (example)
            # This is hypothetical - EXIF doesn't typically include accuracy metrics
            lat_minutes = (gps_data['latitude'] % 1) * 60
            long_minutes = (gps_data['longitude'] % 1) * 60

            if lat_minutes % 1 == 0 and long_minutes % 1 == 0:
                # Even minutes suggest rounded data, possibly less accurate
                gps_data['quality'] = 'medium'
            else:
                gps_data['quality'] = 'high'

            return gps_data
        else:
            print(f"No GPS data found in {image_path}")
            return None

    except Exception as e:
        print(f"Error processing {image_path}: {e}")
        return None

# Usage
gps_data = extract_with_custom_handling("/path/to/image.jpg")

Filtering Photos by Location

from pixtrail.exif_reader import ExifReader
import os
import math

def distance_between_points(lat1, lon1, lat2, lon2):
    """Calculate distance between two points in kilometers using the Haversine formula."""
    # Earth radius in kilometers
    R = 6371.0

    # Convert degrees to radians
    lat1_rad = math.radians(lat1)
    lon1_rad = math.radians(lon1)
    lat2_rad = math.radians(lat2)
    lon2_rad = math.radians(lon2)

    # Differences
    dlat = lat2_rad - lat1_rad
    dlon = lon2_rad - lon1_rad

    # Haversine formula
    a = math.sin(dlat / 2)**2 + math.cos(lat1_rad) * math.cos(lat2_rad) * math.sin(dlon / 2)**2
    c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a))

    return R * c

def find_photos_near_location(directory, target_lat, target_lon, radius_km):
    """Find photos taken within a specified radius of a target location."""
    nearby_photos = []

    for filename in os.listdir(directory):
        if filename.lower().endswith(('.jpg', '.jpeg', '.tiff', '.png', '.nef', '.cr2')):
            filepath = os.path.join(directory, filename)
            gps_data = ExifReader.extract_gps_data(filepath)

            if gps_data:
                distance = distance_between_points(
                    target_lat, target_lon, 
                    gps_data['latitude'], gps_data['longitude']
                )

                if distance <= radius_km:
                    nearby_photos.append({
                        'filename': filename,
                        'distance_km': round(distance, 2),
                        'gps_data': gps_data
                    })

    # Sort by distance
    nearby_photos.sort(key=lambda x: x['distance_km'])

    return nearby_photos

# Usage example: Find photos taken within 1km of the Eiffel Tower
photos = find_photos_near_location(
    '/path/to/photos',
    48.8584, 2.2945,  # Eiffel Tower coordinates
    1.0  # 1km radius
)

for photo in photos:
    print(f"{photo['filename']} - {photo['distance_km']}km away")

Error Handling

The ExifReader includes robust error handling to deal with various issues:

  • Missing EXIF Data: Returns None without raising exceptions
  • Corrupted EXIF Data: Catches and logs exceptions, returns None
  • Unsupported File Formats: Gracefully handles unsupported formats
  • File Access Issues: Reports permission problems
  • Memory Limitations: Manages memory efficiently when processing large RAW files

Performance Considerations

When processing large numbers of images, consider the following:

  • JPEG and TIFF files process much faster than RAW formats
  • Consider using a multiprocessing approach for large batches
  • Pillow-based extraction is faster but less accurate than exifread
  • Memory usage can be high when processing RAW files

Limitations

  • Some image formats have limited or no EXIF support
  • GPS data accuracy depends on the device that took the photo
  • Altitude data may be missing or inaccurate in many photos
  • Timestamp formats can vary between camera manufacturers
  • Extracting GPS data from RAW files requires additional dependencies
  • GPX Generator - For creating GPX files from extracted GPS data
  • Core Module - For high-level photo processing functionality
  • Utilities - For helper functions related to GPS data processing